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In this paper (Part II) we discuss the expected scientific performance of the AGILE mission, focusing on the
large FOV, the spatial resolution and PSF of the y-ray imager, and the crucial capability of simultaneous hard-X

and ~y-ray imaging with ~ 1 — 3 arcmin resolution.

1. AGILE AND GAMMA-RAY ASTRO-
PHYSICS

High energy gamma-ray astrophysics is consid-
ered one of the most challenging fields of study
in the foresceable future. Nearly 300 gamma-ray
sources above 30 MceV were detected by EGRET,
of which only a small fraction, ~ 30%, currently
identificd. Despite its simplicity and moderate
cost, the AGILE scientific performance will pro-
vide a unique set of data, suitable to fulfil the mis-
sion scientific objectives. The AGILE Gamma-
Ray Imaging Detector (GRID) sensitive in the
30 MeV-50 GeV energy range, consists of a Sil-
icon Tracker, a Cesium lodide Mini-Calorimeter
(MCAL) and a scgmented Anticoincidence Sys-

tem. The AGILE instrument is described in more

detail in paper Part I, these Proceedings [1].
The GRID has been designed to obtain:

- excellent imaging capability in the en-

ergy range 100 MeV-50 GeV, improving the

EGRET angular resolution by a factor of 2;

- a very large field-of-view, allowing simulta-

neous coverage of ~ 1/5 of the entire sky per each

pointing;

- excellent timing capability, with absolute

time tagging of uncertainty near 1 us and very

small deadtimes;

- a good sensitivity for point sources, com-

parable to that of EGRET for on-axis sources,

and substantially better for off-axis sources;
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- excellent sensitivity to photons in the en-
ergy range ~30-100 MeV, with an effective
area above 200 cm? at 30 MeV [1];

- a very rapid response to gamma-ray tran-
sients and gamma-ray bursts (GRB), ob-
tained by a special Quicklook Analysis program
and coordinated ground-based and space obser-
vations.

AGILE will also have detection and imaging
capabilities in the hard X-ray range provided by
the Super-AGILE detector. It consists of an
additional plane of four Silicon square detectors
positioned on top of the GRID Tracker. The
main goals of Super-AGILE are the simultaneous
gamma-ray and hard X-ray detection of astro-
physical sources (unprecedented for gamma-ray
instruments), optimal source positioning (1-3 ar-
cmins, depending on intensity), fast burst alert
and on-board trigger capability.

2. SCIENTIFIC PERFORMANCE OF
THE AGILE INSTRUMENT

2.1. Field of view
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Figure 1. Comparison between the AGILE GRID
(solid line circle of radius equal to 60°) and
EGRET (dashed line of radius equal to 25°) fields
of view for a typical pointing of the Galactic cen-
ter region.
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Figure 2. Comparison between the AGILE GRID
(solid) and EGRET (dashed) fields of view for a
pointing centered at the blazar 3C 279

AGILE will have, among other features, an un-
precedently large field of view: FOV ~ 3 sr, larger
than previous gamma-ray experiments such as
EGRET by a factor ~ 5. Figs. 1 and 2 show typ-
ical AGILE pointings. Relatively bright AGNs
and Galactic sources flaring in the gamma-ray
energy range above a flux of 1078 ph em~2s7!
can be detected within a few days by the AGILE
quicklook analysis. We conservatively estimate
that for a 3-year mission AGILE is potentially
able to detect a number of gamma-ray flaring
AGNs larger by a factor of ~ 2 — 3 compared
to that obtained by EGRET during its 6-year
mission. Furthermore, the large FOV will favor
the detection of fast transients such as gamma-
ray bursts. Taking into account the high-energy
distribution of GRB emission above 30 MeV, we
conservatively estimate that ~1 GRB/month can
be detected and imaged in the gamma-ray range
by the GRID.

2.2. Spatial resolution

The AGILE Tracker makes a crucial use of the
analog signal from the Si-microstrips. The AG-
ILE Tracker layout consists of Si-microstrip pitch
of 121um, for a floating strip readout system of
242um pitch. The “floating strip” configuration
was chosen to achieve an excellent spatial reso-
lution while minimizing the number of readout
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channels and the detector power consumption.
By using the analog information of charge deposit
in Si-microstrips, the spatial resolution achieved
by this readout configuration is excellent: below
40pm for a wide range of photon incidence angles

(2].

2.3. Angular resolution
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Figure 3. Three dimensional PSF (68% con-
tainment radius) as a function of photon energy
for AGILE-GRID (on-axis and 50° off-axis) and
EGRET (on-axis).

The v-ray direction reconstruction is based on
the physical process of pair production, and is
obtained from the identification and the detailed
analysis of the electron/positron tracks stemming
from a common vertex. The dircction reconstruc-
tion should take into account the effect of multiple
Coulomb scattering and the distribution of the
total energy of the incident photon between the
et /e™ particles. Before AGILE this was done by
applying a “2-D projection method”, that is by
analyzing separatcly the two tracks projections
in the ZX and ZY views. Contrary to previ-
ous 7y-ray experiments, this simplified 2-D projec-
tion method would not be a good approximation
for AGILE because of its large field of view and
very good intrinsic spatial resolution. The Ag-
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Figure 4. Three dimensional AGILE-GRID PSF
(68% containment radius) as a function of off-axis
angle at fixed energy values.

ile REconstruction Method (AREM) is a general
method for y-ray direction reconstruction appli-
cable to high-resolution Silicon Tracker detectors
in space [3,4]. AREM correctly addresses three
points of the analysis which become relevant for
off-axis incidence angles:

- intrinsic ambiguity in the identification of the
3-dimensional e* /e~ tracks;

- proper identification of the 3-dimensional pair
production plane and reconstructed direction;

- careful choice of an energy weighting scheme for
the 3-dimensional tracks.

As shown in Fig. 3, by integrating the AREM
method with a dedicated track reconstruction
method based on the Kalman filter technique [5],
the AGILE 3-D Point Spread Function (PSF) on-
axis is found to be better than that of EGRET
by a factor of ~ 2 above 400 MeV. The PSF rela-
tively smooth behaviour as a function of the off-
axis angle at fixed energy values is shown in Fig.4.
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Figure 5. Single photon time-tagging uncertainty
(1) of AGILE and previous gamma-ray detectors.

The GRID configuration will achieve a PSF with
68% containment radius better than ~ 0.5° at E
> 1 GeV allowing a gamma-ray source position-
ing with error box radius near 5 — 20" depending
on source spectrum, intensity, and sky position.

Super-AGILE operating in the 10-40 keV band
will have a spatial resolution of 6 arcminute (pixel
size). This translates into a positional accuracy
of 1-2 arcmins (for GRBs at the Crab flux level
and for longer transients at the few tens of mCrab
flux level).

2.4. Energy resolution

The GRID is designed to achieve a nominal
spectral resolution A E/E ~ 1 near 200 MeV,
and a much better resolution below 100 MeV.
This result is obtained by combining the infor-
mation on the particle energy deposited in the
Si-Tracker and in the Mini-Calorimeter. Because
of the AGILE high spatial resolution, multiple
scattering (particularly relevant for particle en-
ergics < 300 MeV) also provides additional in-
formation on individual particle energies. Special
algorithms will reconstruct the incoming photon
energy by off-line data analysis.

Super-AGILE energy resolution in the 10-
40 keV band will be near 3 keV.

MCAL events detected by CsI bars are of two

Gamma—ray missions deadtime
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Figure 6. Instumental deadtimes (7) for the AG-
ILE detectors and previous gamma-ray instru-
ments.

spectral types. Low-energy events, for a single
low-energy channel from 250 keV to 1 MeV (for
1-diode detections), and standard events, for an
energy range from 1 to ~ 100 MeV band with
~1 MeV energy resolution (for 2-diode detec-
tions) [6].

2.5. Timing

AGILE detectors will have optimal timing ca-
pabilities. The on-board GPS system allows to
reach an absolute time tagging precision for indi-
vidual photons near 2 us. Depending on the de-
tectors hardware and electronics, absolute time
tagging can achieve values near 1 — 2 us for the
Silicon-tracker, and 3 —4 us for the individual de-
tecting units of the MCAL and Super-AGILE.

Instrumental deadtimes will be unprecedently
small for gamma-ray detection. The GRID dead-
time will be lower than 200 us (improving by
almost three orders of magnitude the perfor-
mance of previous spark-chamber detectors such
as EGRET). The deadtime of MC single CsI bars
is near 20 us, and that of single Super-AGILE
readout units is ~ 5 us. Taking into account the
segmentation of the electronic readout of MC and
Super-AGILE detectors (30 MCAL elements and
16 Super-AGILE elements) the effective dead-
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AGILE Possible Cycle 1 Pointings

Figure 7. Possible set of AGILE pointings, last-
ing 2 months cach, covering all sky with only 6
pointings in approximatecly one year.

times will be much less than those for individual
units. Furthermore, the MCAL cvents detected
during the Si-Tracker readout deadtime will be
automatically stored in the GRID event. For
these events, precise timing and detection in the
~ 1-200 MeV range can be achieved with tempo-
ral resolution well below 100 pus. This is crucial
for AGILE high-precision timing investigations.
Figs. 5 and 6 show the AGILE timing perfor-
mance compared to other gamma-ray missions.
Fast AGILE timing will, for the first time, allow
investigations and searches for sub-millisecond
transients in the gamma-ray energy range.

2.6. Sky exposure and sensitivity maps

Fig. 7 shows a possible sct of AGILE pointings
(lasting 2 months cach) covering all sky with only
6 pointings. For comparison, in Fig. 8 we show
the EGRET Cycle 1 pointings during 18 months
and the two corresponding exposure distributions
are shown in Fig. 9.

The sensitivity map corresponding to the 1-
year AGILE all-sky survey of Fig. 7 is shown in
Fig. 10 [7]. The distribution of the flux limits is
presented in Fig. 11 showing that the typical sen-
sitivity of the survey is ~ 2 x 10~ "ph em™2 s~ 1.
Due to the larger AGILE FOV, after a 1-year

Figure 8. EGRET Cycle 1 pointings during the
first 18 months of life of the instrument.

all-sky pointing program, we expect the average
exposure for a generic source to be larger by a
factor of ~ 3 — 4 compared to what obtained by
EGRET during the same time period. Therefore,
AGILE average sensitivity for a generic gamma-
ray source above the Galactic plane is expected
to be better than EGRET by a factor ~ 2 with
a greatly enhanced probability of detecting tran-
sient sources. Deep exposures for selected sky re-
gions can be obtained by a program with repeated
overlapping pointings. For selected regions, AG-
ILE can then achieve a sensitivity larger than
EGRET by a factor of ~ 4 — 5 at the completion
of its program, reaching a minimum detectable
flux near ~ 5 x 10~ 8ph cm™2 s~ 1.

AGILE simulated intensity map (above 100
MeV) for the same 6-pointings set, assuming the
gamma-ray background and the sources of the
3rd EGRET catalogue, is presented in Fig. 12
[8]. Finally in Fig. 13 we show a comparison
of simulated 95% contour levels of GRID (solid
curve) and Super-AGILE (square) positioning of
a relatively weak off-axis AGN, with data ob-
tained by EGRET VP227.0 (dotted curve). We
assumed a l-week effective exposure time for a
gamma-ray source of flux above 100 MeV equal to
30 x 1078 phcm~2 s~ ! positioned at ~ 28 degrees
off-axis for AGILE and at ~ 17 degrees off-axis
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Figure 9. AGILE and EGRET exposure distri-
butions corresponding to the two all-sky surveys
discussed in the text.

for EGRET [8).

3. SIMULTANEOUS HARD X/y RAY
INFORMATION

The Super-AGILE imaging coded mask detec-
tor in addition to the GRID will provide a unique
tool for the study of high-energy sources. The
Super-AGILE FOV is planned to be ~ 0.8 sr.
Super-AGILE can provide important information
including:

- source detection and spectral information
in the energy range ~10-40 keV to be ob-
tained simultaneously with gamma-ray data (5
mCrab sensitivity at 15 keV (50) for a 50 ksec
integration time);

- accurate localization (~1-2 arcmins) of
GRBs and other transient events; the ex-
pected GRB detection rate is ~ 1 — 2 per month;
- excellent timing, with absolute time tagging
uncertainty and deadtime near 5 pus for each of
the 16 independent readout units of the Super-
AGILE Si-detector;

- long-timescale monitoring (~2 weeks) of
hard X-ray sources;

- hard X-ray response to gamma-ray tran-
sients detected by the GRID, obtainable by
slight repointings of the AGILE spacecraft (if nec-
essary) to include the gamma-ray flaring source in
the Super-AGILE FOV.

Flux Limits Map (ph/cm2/s ® E>100 MeV)

77.8x1077

Figure 10. Sensitivity map corresponding to the
6-pointings AGILE all-sky survey of Fig. 7.
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Figure 11. The distribution of flux limits for AG-
ILE.

Given the sensitivities of the GRID and Super-
AGILE, simultaneous hard X-ray/gamma-ray in-
formation is anticipated to be obtainable for
GRBs, blazars with strong X-ray continuum such
as 3C 273 and Mk 501, Galactic jet-sources
with favorable geometries, unidentified variable
gamma-ray sources. Fig. 14 shows the expected
scientific performance of Super-AGILE for GRB
detection capability [9]. Super-AGILE is able to
obtain on-board sky images and GRB positions
within a few arcminutes in ~ 10— 15 sec. It would
be extremely important for the astrophysics com-
munity to have a transceiver on board of AGILE,
not yet in the baseline, allowing fast communica-
tion of GRB coordinates within ~ 10 — 20 sec.
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Figure 12. AGILE simulated intensity map
(above 100 MeV) corresponding to the 6-
pointings AGILE all-sky survey.
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Figure 13. Comparison of simulated 95% contour
levels of AGILE GRID (solid curve) and Super-
AGILE (square) positioning of a relatively weak
off-axis AGN, with data obtained by EGRET
(dotted curve).
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Figure 14. Simulation of the Super-AGILE (SA)
GRB detection capability. Upper four-panels:
Simulated detection of the intense GRB 970111
as detected by the SA x and y coordinate units
and corresponding enlargement. Lower four-
panels: Simulated detection of the relatively weak
GRB 980425 (note the different counts scale).
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TABLE 1. AGILE Detector Capabilities

Gamma-Ray Imaging Detector (GRID)

Energy Range
Field of view

30 MeV - 50 GeV
~3sr

Effective Area (on-axis, at 400 MeV) ~ 540 cm?
Effective Arca (50-60° off-axis, at 400 McV) ~320cm?
Angular Resolution (68% cont. radius, 1 GeV) 36 arcmin
Source Location Accuracy (for S/N >10) ~5-20 arcmin
Energy Resolution (with MCAL, at 400 MeV)  AE/E~1
Deadtime ~ 100 us
Absolute Timing Accuracy ~2us

Mini-Calorimeter (MCAL)

Energy Range

250 keV - 200 MeV

Energy Resolution ~ 1 MeV
Effective Area (at 300-900 keV) ~ 100cm?
Effective Area (at 1-10 MeV) ~ 500cm?
Effective Area (at 10-100 McV) ~ 1000 cm?
Deadtime (single Csl bar) < 10-20ps
Absolute Timing Accuracy <Sps
Super-AGILE (SA)

Energy Range 10-40 keV
Field of view (Full Width at Zero Sens.) 107°x68°
Sensitivity (Soin 1 day) ~ 5 mCrab
Angular Resolution (Pixel Size) 6 arcmin
Source Location Accuracy (for S/N~10) ~1-3 arcmin
Energy Resolution AE <4 keV
Deadtime (single "daisy-chain” unit) <5us
Absolute Timing Accuracy <5us

Figure 15.
sumimed up in this table.

4. CONCLUSIONS

AGILE detector capabilities are

The gamma-ray Universe faces us with many
challenges. We believe that AGILE developed

as an highly innovative Italian Mission, open to
the international high-energy astrophysics com-
munity, will provide crucial data to successfully
pursue these challenges, and substantially ad-
vance the understanding of the most energetic
phenomena of our Universe.
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